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ABSTRACT

Graph Neural Networks (GNNs)-based recommendation algorithms
typically assume that training and testing data are drawn from in-
dependent and identically distributed (IID) spaces. However, this
assumption often fails in the presence of out-of-distribution (OOD)
data, resulting in significant performance degradation. In this study,
we construct a Structural Causal Model (SCM) to analyze inter-
action data, revealing that environmental confounders (e.g., the
COVID-19 pandemic) lead to unstable correlations in GNN-based
models, thus impairing their generalization to OOD data. To ad-
dress this issue, we propose a novel approach, graph representation
learning via causal diffusion (CausalDiffRec) for OOD recommen-
dation. This method enhances the model’s generalization on OOD
data by eliminating environmental confounding factors and learn-
ing invariant graph representations. Specifically, we use backdoor
adjustment and variational inference to infer the real environmen-
tal distribution, thereby eliminating the impact of environmental
confounders. This inferred distribution is then used as prior knowl-
edge to guide the representation learning in the reverse phase of the
diffusion process to learn the invariant representation. In addition,
we provide a theoretical derivation that proves optimizing the ob-
jective function of CausalDiffRec can encourage the model to learn
environment-invariant graph representations, thereby achieving
excellent generalization performance in recommendations under
distribution shifts. Our extensive experiments validate the effec-
tiveness of CausalDiffRec in improving the generalization of OOD
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data, and the average improvement is up to 10.69% on Food, 18.83%
on KuaiRec, 22.41% on Yelp2018, and 11.65% on Douban datasets.
Our code is available at https://github.com/user683/CausalDiffRec.
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1 INTRODUCTION

Graph Neural Networks (GNN) [43, 57, 58], due to their exceptional
ability to learn high-order features, have been widely applied in
recommendation systems. GNN-based recommendation algorithms
[8, 30, 42] learn user and item representations by aggregating infor-
mation from neighboring nodes in the user-item interaction graph
and then computing their similarity to predict user preferences. In
addition, researchers have introduced various other techniques to
continuously improve GNN-based recommendation algorithms. For
example, integrating attention mechanisms [7, 25] with knowledge
graphs [14] led to improving recommendation accuracy. Further-
more, the introduction of contrastive learning aims to improve the
robustness of recommendation algorithms [17, 17, 50].

Despite significant progress in enhancing recommendation accu-
racy, most existing methods assume that test and training datasets
follow an independently and identically distributed (IID) pattern, fo-
cusing on performance improvements under this assumption. Such
methods struggle to generalize effectively to out-of-distribution
(OOD) data, where test data distributions markedly differ from
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training data [13, 23, 47]. For example, as shown in Figure 1, the pop-
ularity of medical supplies surged during the COVID-19 pandemic,
alongside increased demand for fitness equipment and electronics
due to government-imposed homestays. The recommender systems
might infer that purchasing masks correlates with buying these
additional items, driven by the common ’pandemic’ factor rather
than direct causation. Once the pandemic subsides, demand shifts,
reducing the popularity of masks and related items. Consequently,
the system may inaccurately recommend fitness equipment and
electronics to mask buyers under the new distribution, leading to
poor performance. Additionally, tests on the Yelp2018 dataset, com-
paring IID and OOD sets, demonstrate a significant performance
drop. LightGCN [9] experiences an average 29.03% decline across
three metrics on OOD data compared to IID settings, highlight-
ing the robustness issues of GNN-based models in OOD scenarios.
This challenge motivates the development of a recommendation
framework with strong generalization capabilities for handling
distribution shifts.

Several studies have aimed to enhance the generalization of rec-
ommender systems on OOD datasets by using causal inference to
address data distribution shifts. For instance, CausPref [11] builds
on NeuMF [10] by implementing invariant user preference causal
learning and anti-preference negative sampling to boost model gen-
eralization. COR [31] utilizes a Variational Auto-Encoder for causal
modeling by inferring unobserved user features from historical
interactions. However, these methods are not tailored for GNNss,
complicating their adaptation to GNN-based approaches.

Other researchers have adopted techniques like graph contrastive
learning and graph data augmentation to improve the robustness of
GNN-based recommendation algorithms, such as SGL [40], SimGCL
[49], and LightGCL [1]. These approaches mainly address noise or
popularity bias but underperform when test data distributions are
unknown or varied, as evidenced by experimental results. Recently,
a few GNN-based methods [52] have been proposed to enhance
generalization across multiple distributions, but they lack strong
theoretical backing.

Given these limitations, there is an urgent need to design theoret-
ically grounded GNN-based methods to address distribution shifts.
In this paper, we use invariant learning to improve the generaliza-
tion of the OOD dataset. Utilizing insights from the prior knowledge
of environment distribution and invariant learning [5, 20, 56] en-
hances model stability across varied environments. This is achieved
by acquiring invariant representations, boosting the model’s gener-
alization capabilities and overall robustness. However, designing
models based on invariant learning still faces the following two
challenges:

e (1) How to infer the distribution of underlying environments
from observed user-item interaction data?

o (2) How to recognize environment-invariant patterns amid chang-
ing user behaviors and preferences?

In this paper, we first develop a Structural Causal Model (SCM)
to analyze data generation processes in recommender systems,
specifically addressing the impact of data distribution shifts on
GNN-based recommendation algorithms. We find that latent en-
vironmental variables can lead these models to capture unstable
correlations, hindering their generalization to OOD data. To tackle
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Figure 1: Left and Middle: An example illustrates the pop-
ularity distribution shift, i.e., how the popularity of masks,
disinfectants, exercise equipment, and electronic products
changes with the COVID-19 pandemic. Right: We constructed
both IID and OOD sets on the Yelp2018 dataset and compared
the performance of the LightGCN model [9] on these datasets.
We found a significant average performance drop (i.e., 29.03%)
in OOD data across three metrics.

this, we introduce CausalDiffRec, a novel method using causal in-
ference to remove these unstable correlations by learning invariant
representations across different environments. CausalDiffRec com-
prises an environment generator to create diverse data distributions,
an environment inference module to identify and utilize environ-
mental components, and a diffusion module guiding invariant rep-
resentation learning. Theoretically, we prove that CausalDiffRec
can achieve better OOD generalization by identifying invariant
representations across varying environments.
The contributions of this paper are concluded as follows:

e Causal Analysis. We construct the SCM and analyze the gen-
eralization ability of GNN-based recommendation models on
OOD data from the perspective of data generation. Based on our
analysis and experimental results, we conclude that environmen-
tal confounders lead the model to capture unstable correlations,
which is the key reason for its failure to generalize under distri-
bution shifts.

e Methodology. We introduce CausalDiffRec, a new GNN-based
method for OOD recommendation, comprising three main mod-
ules: environment generation, environment inference, and diffu-
sion. The environment generation module simulates user data
distributions under various conditions, the environment infer-
ence module uses causal inference and variational approximation
to deduce environment distribution, and the diffusion module
facilitates graph representation learning. Theoretical analysis
confirms that optimizing CausalDiffRec’s objective function en-
hances model generalization.

o Experimental Findings. We constructed three common types
of distribution shifts across four datasets and conducted compar-
ative experiments. The experiments demonstrate that CausalD-
iffRec consistently outperforms baseline methods. Specifically,
CausalDiffRec exhibits enhanced generalization capabilities when
dealing with OOD data, achieving a maximum metric improve-
ment rate of 36.73%.

2 PRELIMINARY
2.1 GNN-based Recommendation

Given the observed implicit interaction matrix R € {0, 1}™*",
in which U = {uy,uy,...,um} represents the set of users, 7 =
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{i1, 12, ...,in} represents the set of items, m and n denote the num-
ber of users and items, respectively. For the elements in the inter-
action matrix, ry; = 1 indicates an interaction between user u and
item i, otherwise 0. In GNN-based recommendation algorithms,
the user-item interaction matrix R is first transformed into a bi-
partite graph G = {7V, E}. We employ V to represent the node
setand & = {(w,i)|lu € U,i € I,ry; = 1} denotes the edge set.
Given a user-item interaction graph G, and the true user interac-
tions y,, with respect to (w.r.t) user u, the optimization objective of
GNN-based methods can be expressed as:

arg ming E(g, y,)~P(G,Y) [[(fo(Gu3 0), yu)), )
where fy(-) is a learner that learns representations by aggregating
high-order neighbor information from the user-item interaction
graph. [ denotes the loss function and P(G, Y) represents the joint
distribution of the interaction graph G and true label Y.

2.2 Denoising Diffusion Probabilistic Models

Denoising Diffusion Probabilistic Models (DDPM) [12] have been
widely used in the field of image and video generation. The key idea
of DDPM is to achieve the generation and reconstruction of the
input data distribution through a process of gradually adding and
removing noise. It leverages neural networks to learn the reverse
denoising process from noise to real data distribution.

The diffusion process in recommender system models the evo-
lution of user preferences and item information through noise
addition and iterative recovery. Initially, data x sampled from g(x)
undergo a forward diffusion to generate noisy samples x, ..., Xt
over T steps. Each step adds Gaussian noise, transforming the data
distribution incrementally [12]:

q(x¢lxe-1) = N (Xt§ V1- ﬁtXt—l,ﬁtI), ()

where f; € (0, 1) controls the level of the added noise at step ¢. In
the reverse phase, the aim is to restore the original data by learning
a model pg to approximate the reverse diffusion from xr to x¢. The
process, governed by pg(x;—1|x;), uses the mean g and covariance
3¢ learned via neural networks:

po(Xe—11xe) = N (x¢-1; g (X, 1), X (X1, 1)) - ®)
The reverse process is optimized to minimize the variational lower
bound (VLB), balancing the fidelity of reconstruction and the sim-
plicity of the model [38]:

Lvip = Eg(xirlxo)

T
ZDKL(CI(Xt—l|thX0)||p0(Xt—1|Xt))] @

=
—log pg(xolx1),

where Dk, denotes the Kullback-Leibler (KL) divergence. Following
[12], we mitigate the training instability issue in the model by
expanding and reweighting each KL divergence term in the VLB
with specific parameterization. Therefore, we have the following
mean squared error loss:

‘et —€p (\/&txo +V1 = aze, t)Hz] , (5

where ¢; ~ N(0,1) is the noise for injection in forward process,
€9(+) denotes a function approximator that neural networks can
replace, and a; = Hle 1 — f;. This framework allows the model

Lsimple =Erxpe; [
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E: Environmental factors that cannot be directly observed, e.g., policies and economic conditions.

G: Bipartite graph of user-item interactions.

Y: The true label.

/: Invariant attributes of users or items.

Figure 2: The structure causal model for GNN-based recom-
mendation

to effectively learn noise-free representations and improve recom-
mendation accuracy.

2.3 Invariant Pattern Recognition Mechanism

Invariant learning [23, 51] is often used to develop predictive mod-
els that can generalize to out-of-distribution (OOD) data, which
originates from different environments. Existing invariant learning
methods typically rely on the following assumptions:
Assumption: For a given user-item interaction graph (i.e., data
distribution D), these interaction data are collected from K different
environments E. User behavior patterns exist independently of
the environment and can be used to generalize out-of-distribution
user preference prediction. There exists an optimal invariant graph
representation learning F*(-) satisfying:
e Invariance Property. Ve € D(E) ,Py(Y|F*(G),E = eI) =
P(Y|F*(G),I).
e Sufficiency Condition. Y = F*(G) + ¢, e LE, where L indicates
statistical independence and € is random noise.

The invariance property assumption indicates that a graph rep-
resentation learning model exists capable of learning invariant
user-item representations across different data distribution envi-
ronments. The sufficiency condition assumption means that the
learned invariant representations enable the model to make accu-
rate predictions.

3 METHODOLOGY

In this section, we first construct SCM and identify environmental
confounders as the key reason for the failure of GNN-based mod-
els to generalize on OOD (out-of-distribution) data. Subsequently,
we introduce the variational inference to infer the true distribu-
tion of the environment. We use the diffusion model to learn the
representation based on invariant learning. Finally, we provide
rigorous theoretical proof of CausalDiffRec that can achieve great
generalization. The model framework is illustrated in Figure 3.

3.1 SCM of GNN-based Recommendation

To explore the reasons behind the failure of GNN-based models to
generalize on OOD data, we follow previous works [41] [46] and
first construct the SCM for data generation and data modeling in
recommendation systems, as shown in Figure 2 (a) and Figure 2 (b).
We find that environmental confounding factors are the key reason
for the generalization failure of GNN-based methods. Finally, we
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design an intervention model in Figure 2 (c) to eliminate the impact
of environmental confounding factors.

3.1.1 Causal View in GNN-based Recommendation. InFigure
2, the three causal relations are derived from the definitions of data
generation. The detailed causal analysis behind them is presented
as follows:

e Environmental Factors (E): These represent unseen factors
such as sudden events or policies that affect user-item interaction
graphs (G) and true labels (Y). Invariant attributes (I), like user
gender and item categories, remain unaffected by these factors.
Prior research [11] suggests leveraging these invariant features
can enhance model generalization in OOD environments.

e E — G: This describes the direct effect of the environment on
user-item interactions, defined by the probability P(G|E). For
instance, cold weather might increase user interactions with
warm clothing.

e G — Y: This reflects how the interaction graph G influences the
user behavior label Y, characterized by the GNN model Y = f3(G).
With fixed model parameters 0, the relationship between G and
Y is deterministic.

e | — Y: Invariant attributes directly affect the user behavior
label Y. For instance, a user might consistently prefer a specific
restaurant, where attributes like the location remain constant.

e E — Y:The environment directly impacts the user behavior label
Y, independent of user-item interactions. For example, during
holidays, users might be more inclined to buy holiday-related
items regardless of past interactions.

In real-world scenarios, training data is collected from hetero-
geneous environments. Therefore, the environment directly influ-
ences the distribution of the data and the prediction result, which
can be explicitly represented as P(Y,G|E) = P(G|E)P(Y|G,E). If
we employ Dy (E) to represent the training data distribution for
unobserved environments, the GNN-based model, when faced with
OOD data, can rewrite Eq. (1) as:

arg ming Ee.p,, (£),(G,u)~P(G.Y |E=e) [L(Jo(Gus 0), yu)lel,  (6)

Eq. (6) shows that environment E affects the data generation used
for training the GNN-based recommendation model.

3.1.2 Confounding Effect of E. Figure 2 (a) and Figure 2 (b)
illustrate the causal relationships in data generation and model
training for graph-based recommendation algorithms. E acts as the
confounder and directly optimizing P(Y|G) leads the GNN-based
recommendation model to learn the shortcut predictive relationship
between G, and yy, which is highly correlated with the environ-
ment E. During the model training process, there is a tendency to
use this easily captured shortcut relationship to model user prefer-
ences. However, this shortcut relationship is highly sensitive to the
environment E. When the environment of the test set is different
from that of the training set (i.e., D¢ (E) # D;s(E)), this relation-
ship becomes unstable and invalid. The recommendation model
that excessively learns environment-sensitive relationships in the
training data will struggle to accurately model user preferences
when faced with OOD data during the testing phase, resulting in
decreased recommendation accuracy.
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3.1.3 Intervention. Through the above analysis, we can improve
the generalization ability of GNN-based recommendation models
by guiding the model to uncover stable predictive relationships
behind the training data, specifically those that are less sensitive
to environmental changes. Thus, we can eliminate the influence
of environmental confounders on model predictions. Specifically,
we learn stable correlations between user item interaction G,, and
ground truth y,, by optimizing Pg(Y|do(G)) instead of Py(Y|G).
In causal theory, the do-operation signifies removing the depen-
dencies between the target variable and other variables. As shown
in Figure 2 (c), by cutting off the causal relationship between the
environment variables and the user interaction graph, the model
no longer learns the unstable correlations between G, and y,,. The
do-operation simulates the generation process of the interaction
graph G, where environmental factors do not influence the user-
item interactions. This operation blocks the unstable backdoor path
G < E — Y, enabling the GNN-based recommendation model
to capture the desired causal relationship that remains invariant
under environmental changes.

Theoretically, Py(Y|do(G)) can be computed through random-
ized controlled trials, which involve randomly collecting new data
from any possible environment to eliminate environmental bias.
However, such physical interventions are challenging. For instance,
in a short video recommendation setting, it is impossible to expose
all short videos to a single user, and it is also impractical to control
the environment of data interactions. In this paper, we achieve a
statistical estimation of Py(Y|do(G)) by leveraging backdoor ad-
justment. We have:

Pg(Y|do(G)) = Ee-p,, (£)[Po(YIG,E, I)]. )

The derivation process is shown in Appendix B.1. Through the
aforementioned backdoor adjustment, the influence of the envi-
ronment E on the generation of G can be eliminated, enabling the
model to learn correlations independent of the environment. How-
ever, in recommendation scenarios, environmental variables are
typically unobservable or undefined, and their prior distribution
P(E = e) cannot be computed. Therefore, directly optimizing the
Eq. (7) is challenging.

3.2 Model Instantiations

3.2.1 Environment Inference. This work introduces a varia-
tional inference method and proposes a variational inference-based
environment instantiation mechanism. The core idea is to use vari-
ational inference to approximate the true distribution of environ-
ments and generate environment pseudo-labels as latent variables.
The following tractable evidence lower bound (ELBO) can be ob-
tained as the learning objective:

logPy(Y|do(G)) 2 Lenoinf = Eg,, (|G,1) [10gPo(Y|G, E, I)]
—Di1.(Qy(EIG,I) || Po(E)),

where Qy (E|G,I) denotes environment estimation, which draws
samples from the true distribution of the environment E. Dk, rep-
resents the Kullback-Leibler (KL) divergence of the volitional dis-
tribution Qs (E|G, I) and the prior distribution Py(E). Po(Y|G, E, I)
is the graph representation learning module that employs the user-
item interaction graph and the node attributes of users and items as
input to learn invariant representations. Section 3.2.2 will provide a
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detailed introduction to the graph representation learning module.
The derivation process of Eq. (8) is displayed in Appendix B.2.

3.2.2 Invariant Representation Learning. This section mainly
consists of an environment generator, a diffusion-based graph rep-
resentation learning module, and a recommendation module. Next,
we will detail how they collaborate to enhance the generalizability
of GNN-based models on OOD data and improve recommendation
accuracy.

Environment Generator. In real-world recommendation sce-
narios, training datasets are collected in various environments.
However, for a single user-centric interaction graph, the train-
ing dataset comes from a single environment. We need to learn
environment-invariant correlations from training data originating
from different environments to achieve the generalization capabil-
ity of GNN-based recommendation models under distribution shifts.
To circumvent this dilemma, this paper designs an environment
generator g, (-)(1 < k < K), which takes the user’s original inter-
action graph G as input and generates a set of K interaction graphs
{Gi}{(: | to simulate training data from different environments. The
optimization objective is expressed as follows:

Lgenerator = [Var(l(gwk(G)) 11<k< K)] > 9

where Var(-) denotes the variance and £(+) is the loss function.
Following existing work [41], we modify the graph structure by
adding and removing edges. Given a Boolean matrix B, the ad-
jacency matrix A of the graph, and its complement A’, the k-th
generated view for the original view is Ay = A+ B © (A—-A").
Since By, is a discrete matrix and not differentiable, it cannot be
optimized directly. To address this issue, we borrow the idea from
[41] and use reinforcement learning to treat graph generation as a
decision process and edge editing as actions. Specifically, for view
k, we consider a parameter matrix 6y = {9,’5,"}. For the n-th node,
the probability of exiting the edge between it and the m-th node is
given by:

exp(6X,,)

m’'=m

h(ak )= ——nml
. m’'=1 exp(eﬁm,)

(10)

k
nmt};:l

M(h(a,’il), . h(aﬁm)), which give the nonzero entries in the n-
th row of Bi. The reward function R(Gy) can be defined as the
inverse loss. We can use the reinforcement algorithm to optimize
the generator with the gradient:

Ve, log hg, (A)R(Gy), (11)

We then sample s actions {b from a multinomial distribution

where 0, is the model parameters and hg, (Ag) = [1,, [13_; h(bﬁmt).
Optimizing Eq. (9) ensures that the generated graphs have large
differences.

Causal Diffusion. Given the generated interaction graph G =
(Ag, I) where A is the adjacency matrix, and I is the feature matrix
of users or items, instead of directly using Gy, as input for diffusion,
we use the encoder from the Variational Graph Autoencoder (VGAE)
to compress G to a low-dimensional vector xz ~ N (pg, o) for
subsequent environment inference and graph invariant representa-
tion learning. The encoding process is as follows:

ay (<Y |AR I) = N3 |y, o), (12)
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where i = GCN,(Ag,I) is matrix of mean vectors and o} =
GCNy (A, I) denotes standard deviation. The GCN () is the graph
convolution network in the graph variational autoencoder. Accord-
ing to the reparameterization trick, Xz can be calculated as follows:

xz =l +0r QF, (13)

where ¢ ~ N(0,I) and O is the element product. Latent embed-
ding xz will be used as the input for the environment inference

module to generate environment pseudo-labels. Meanwhile, xz will
do the forward and reverse processes in the latent space to learn
the user/item embeddings in DDPM. The forward process can be

calculated as:

T
g T Ix) = [ a1 %7, (14)

t=1
After obtaining the environment approximation variable z,;,5q1 =
Q(E|Gg, I) according to Eq. (8), the pair of latent variables (z¢qysa1, X]];)
to learn the invariant graph representation. We approximate the
inference distribution by parameterizing the probabilistic decoder
through a conditional DDPM pg (x} ™! [x[.. zcqusat)- Using DDPM,
the forward process is entirely deterministic except for t = 1. We
define the joint distribution of the reverse generative process as
follows:

T
0:T T -1
PQ(Xk | Zcausal) = P(Xk) HPQ(X;C | X]tc’zcausal)~ (15)
t=1

-1 -1 ¢ ¢
Pe(Xk Ix) =N (Xk §/19(Xk, Zequsals £)s Ze(xk, Zcausal> t)) .
(16)
The loss function in Eq. (5) can be rewritten as:

2
’Et —€p (X]tc’zcausal’ t)” > 17)

LInvsample =Erxoe;

where Xltc = \/&txz + V1 — aye. After obtaining the reconstructed

output vector R = xg from DDPM, it will be used as the input for
the decoder of the variational graph decoder, which then recon-
structs the input graph. The entire process is illustrated as follows:

A = p(RRT), (18)

where ¢(-) is the activation function (the sigmoid function is used
in this paper). The VGAE is optimized by the variational lower
bound: N

Lvear =By, (x|a,.1) [log po (Aklx))]

~Dxe (ay (AR D 11 p}))
Prediction and Joint Optimization. Using the well-trained

diffusion model to sample the final embeddings for user preference
modeling:

(19)

Fui = e €, (20)
where e, and e; denote the final user embedding w.r.t u-th user
and item embedding w.r.t i-th item, respectively. Without loss of
generality, LightGCN is used as the recommendation backbone, and
Bayesian Personalized Ranking (BRP) loss is employed to optimize
the model parameters:

Lrec = Z —log o(Fypr — Fuw-), (21)

T
u,ot,0
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Figure 3: Overall framework illustration of the proposed CausalDiffRec model.

where (u,v",v7) is a triplet sample for pairwise recommendation
training. v* represents positive samples from which the user has in-
teracted, and 0™ are the negative samples that are randomly drawn
from the set of items with which the user has not interacted, respec-
tively. We use a joint learning strategy to optimize CausalDiffRec:

L ZLrec + /11 : Lgenerator
+ 22 (LvGaE + Llnvsample) + 3 * Lenvint

(22)

where 11, A3, and A3 are hyper-parameters. We provide rigorous
theoretical proof in appendix A that optimizing the loss function in
Eq. (22) can encourage the model to learn environment-invariant
graph representations, thereby achieving generalization in out-of-
distribution data recommendations. Model complexity analysis is
provided in Appendix F.

4 EXPERIMENTS

In this section, we conducted extensive experiments to validate
the performance of CausalDiffRec and address the following key
research questions:

e RO1: How does CausalDiffRec compare to the state-of-the-art
strategies in both OOD and IID test evaluations?

o RQ2: Are the proposed components of CausalDiffRec effective
for OOD generalization?

e RQ3: How do hyperparameter settings affect the performance
of CausalDiffRec?

4.1 Experimental Settings

Datasets.We evaluate the performance of our proposed CausalD-
iffRec method under three common data distribution shifts across
four real-world datasets: Food!, KuaiRec? Yelp20183, and Douban*
comprise raw data from the Douban system. Detailed statistics of
the datasets are presented in Table 1. The detailed information and
processing specifics of the dataset can be found in Appendix C.

Baselines. We compare the CusalDiffRec with the state-of-the-
art models: LightGCN[40], SGL [40], SimGCL[49], LightGCL[1],
InvPref [39], InvCF [54], AdvDrop [52], AdvInfo [53], and DR-GNN
[28]. Appendix E presents the detailed information of the baselines.

!https://www.aclweb.org/anthology/D19-1613/
https://kuairec.com
3https://www.yelp.com/dataset
4https://www.kaggle.com/datasets/

4.2 Overall Performance (RQ1)

This section compares CausalDiffRec’s performance and baselines
under various data shifts and conducts a performance analysis.

Evaluation on temporal shift: Table 1 shows that CausalD-
iffRec significantly outperforms SOTA models on the Food dataset,
with improvements of 1.99%, 24.89%, 6.03%, and 9.68% in Recall and
NDCG. This indicates CausalDiffRec’s effectiveness in handling
temporal shift. DRO also excels in this area, with a 15% improve-
ment over LightGCN in NDCG@20, due to its robust optimization
across various data distributions. CDR surpasses GNN-based models
thanks to its temporal VAE-based architecture, capturing preference
shifts from temporal changes.

Evaluation on exposure shift: In real-world scenarios, only a
small subset of items is exposed to users, leading to non-random
missing interaction records. Using the fully exposed KuaiRec dataset,
CausalDiffRec consistently outperforms baselines, with improve-
ments ranging from 6.90% to 28.83%, indicating its capability to
handle exposure bias. DRO and AdvInfoNce also show superior
performance in NDCG and Recall metrics, enhancing the generaliza-
tion of GNN-based models and demonstrating robustness compared
to LightGCN.

Evaluation on popularity shift. We compare model perfor-
mance on the Yelp2018 and Douban datasets, showing that our
model significantly outperforms the baselines. On Douban, CausalD-
iffRec achieves 8.22% to 17.96% improvement, and on Yelp2018, the
improvements range from 11.24% to 36.73%. Methods using con-
trastive learning (e.g., SimGCL, LightGCL, AdvInfoNce) outperform
other baselines in handling popularity shifts. This is because the
InfoNCE loss helps the model learn a more uniform representation
distribution, reducing bias towards popular items. InvPref performs
best among the baselines on Yelp2018, using clustering for contex-
tual labels, unlike our variational inference approach. Our method,
tailored for graph data, aggregates neighbor information for bet-
ter recommendation performance than matrix factorization-based
methods.

Additionally, in Table 4, we report the performance of CausalD-
iffRec compared to several baseline models that use LightGCN as the
backbone. From the table, we observe the following: 1) These base-
line models outperform LightGCN on IID datasets; 2) CausalDiffRec
outperforms all baseline models across all metrics. This indicates
that CausalDiffRec also performs well on IID datasets. We attribute
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Table 1: The performance comparison between the baselines and CausalDiffRec on the four datasets with three data distribution
shifts. The best results are highlighted in bold, and the second-best results are underlined. 'Impro. denotes the relative

improvements of CausalDiffRec over the second-best results.

Dataset | Metric | LightGCN  SGL  SimGCL LightGCL InvPref InvCF CDR AdvDrop AdvInfo DR-GNN Ours Impro.
R@10 0.0234  0.0198 0.0233 0.0108 0.0029 0.0382 0.0260  0.0240 0.0227 0.0266 0.0281 5.63%

Food N@10 0.0182  0.0159 0.0186 0.0101 0.0014 0.0237 0.0195 0.0251 0.0135 0.0205 0.0296 17.93%
R@20 0.0404  0.0324 0.0414 0.0181 0.0294 0.0392 0.0412 0.0371 0.0268 0.0436 0.0464 6.42%

N@20 0.0242  0.0201 0.0249 0.0121 0.0115 0.0240 0.0254 0.0237 0.0159 0.0279  0.0306 9.68%

R@10 0.0742  0.0700 0.0763 0.0630 0.0231 0.1023 0.0570 0.1014 0.1044 0.0808 0.1116 6.90%

KuaiRec N@10 0.5096  0.4923 0.5180 0.4334 0.2151 0.2242 0.2630  0.3290 0.4302 0.5326 0.6474 21.55%
R@20 0.1120  0.1100 0.1196 0.1134 0.0478 0.1034 0.0860 0.1214 0.1254 0.1266 0.1631 28.83%

N@20 0.4268  0.4181 0.4446 0.4090 0.2056 0.2193 0.2240 0.3289 0.4305 0.4556 0.5392 18.35%

R@10 0.0014  0.0027 0.0049 0.0022 0.0049 0.0004 0.0011 0.0027 0.0047 0.0044 0.0067 36.73%

Yelp2018 N@10 0.0008  0.0017 0.0028 0.0015 0.0030 0.0026 0.0006 0.0017 0.0024 0.0029 0.0039 30.00%
R@20 0.0035  0.0051 0.0106 0.0054 0.0108 0.0013 0.0016  0.0049 0.0083 0.0076  0.0120 11.65%

N@20 0.0016  0.0026 0.0047 0.0026 0.0049 0.0008 0.0008 0.0024 0.0038 0.0041 0.0055 11.11%

R@10 0.0028  0.0022 0.0086 0.0070 0.0052 0.0030 0.0014 0.0051 0.0076 0.0028 0.0094 9.30%

Douban N@10 0.0015  0.0013 0.0045 0.0038 0.0026 0.0012 0.0007 0.0021 0.0042 0.0011  0.0050 11.11%
R@20 0.0049  0.0047 0.0167 0.0113 0.0093 0.0033 0.0200 0.0046 0.0103 0.0038 0.0197 17.96%

N@20 0.0019  0.0020 0.0073 0.0050 0.0038 0.0013 0.0019 0.0021 0.0053 0.0015 0.0079 8.22%

Table 2: Outcomes from ablation studies on four datasets.
The top-performing results are highlighted in bold, while
those that are second-best are underlined.

Dataset Ablation R@10 R@20 N@10 N@20
LightGCN 0.0234 0.0404 0.0182 0.0242

Food w/o Gen. 0.0165 0.0259 0.0114 0.0148
w/o Env. 0.0084 0.0144 0.0077  0.0098
CausalDiffRec | 0.0251 0.0409 0.0296 0.0306

LightGCN 0.0808 0.1266 0.5326  0.4556

KuaiRec w/o Gen. 0.0966  0.1571 0.0445 0.3078
w/o Env. 0.0047 0.1740 0.0697 0.0784
CausalDiffRec | 0.1116 0.1631 0.0674 0.5392

LightGCN 0.0014 0.0035 0.0008 0.0016

Ye1p2018 w/o Gen. 0.0041 0.0054 0.0037 0.0042
w/o Env. 0.0027 0.0058 0.0042 0.0043
CausalDiffRec | 0.0067 0.0120 0.0039 0.0055

LightGCN 0.0028 0.0049 0.0015 0.0019

Douban w/o Gen. 0.0044 0.0079 0.0030 0.0045
w/o Env. 0.0044 0.0070 0.0023 0.0031
CausalDiffRec | 0.0094 0.0197 0.0050 0.0079

the performance improvement to our use of data augmentation
and the incorporation of auxiliary information in modeling user
preferences.

In summary, the analysis of experimental results demonstrates
that our proposed CausalDiffRec can handle different types of dis-
tribution shifts and achieve good generalization.

4.3 In-depth Analysis (RQ2)

In this section, we conduct ablation experiments to study the impact
of each component of CausalDiffRec on recommendation perfor-
mance. The main components include the environment generator

module and the environment inference module. Additionally, we
use t-SNE to visualize the item representations captured by the
baseline model and CausalDiffRec, to compare the models’ general-
ization capabilities on OOD data.

Ablation studies. Table 2 presents the results of the ablation
study that compares LightGCN, CausalDiffRec, and its two variants:
’w/o Gen. (without the environment generator) and *w/o Env.’ (with-
out the environment inference). The results show that removing
these modules causes a significant drop in all metrics across four
datasets. For example, on Yelp2018, Recall, and NDCG decreased by
148.15% and 126.83%, respectively, demonstrating the effectiveness
of CausalDiffRec based on invariant learning theory for enhancing
recommendation performance on OOD datasets. Additionally, even
without the modules, CausalDiffRec still outperforms LightGCN on
popularity shift datasets (Yelp2018 and Douban) due to the effective-
ness of data augmentation and environment inference. However, on
the Food and KuaiRec datasets, removing either module results in
worse performance than LightGCN, likely due to multiple biases in
these datasets. Without one module, the model struggles to handle
multiple data distributions, leading to a performance drop. Overall,
the ablation experiments highlight the importance of all modules
in CausalDiffRec for improving recommendation performance and
generalizing on OOD data.

Visualization analysis. In Figure 6 and Figure 7, we used t-SNE
to visualize the item representations learned by LightGCN, SimGCL,
and CausalDiffRec on Douban and Yelp2018 datasets to better ob-
serve our model’s ability to handle distribution shifts. Following
previous work [28], we recorded the popularity of each item in the
training set and designated the top 10% most popular items as "pop-
ular items’ and the bottom 10% as 'unpopular items’. It is obvious
that the embeddings of popular and unpopular items learned by
LightGCN still exhibit a gap in the representation space. In con-
trast, the embeddings learned by CausalDiffRec are more evenly
distributed within the same space. This indicates that CausalDiffRec
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can mitigate the popularity shift caused by popular items. Addi-
tionally, we found that the embeddings of popular and unpopular
items learned by SimGCL are more evenly distributed compared to
LightGCN. This is because contrastive learning can learn a uniform
representation distribution.

4.4 Hyperparameter Investigation (RQ3)

Effect of Diffusion Step T. We conducted experiments to investi-
gate the impact of the number of diffusion steps on performance;
in CausalDiffRec, we used the same number of steps in the forward
and reverse phases. we compare the performance with T changing
from 10 to 500. We present the results in Figure 4, and we have the
following findings:

o When the number of steps is chosen within the range {10, 50, 100},
CausalDiffRec achieves the best performance across all datasets.
We find that appropriately increasing the number of steps signif-
icantly improves Recall@20 and NDCG@20. These performance
enhancements are mainly attributed to the diffusion enriching
the representation capabilities of users and items.

o Nevertheless, as we continue to increase the number of steps,
the model will face overfitting issues. For example, on the food
and yelp2018 datasets, Recall@20 and NDCG@20 consistently
decrease. Although there is an upward trend on KuaiRec, the
optimal solution is not achieved. Additionally, it is evident that
more steps also lead to longer training times. We should carefully
adjust the number of steps to find the optimal balance between
enhancing representation ability and avoiding overfitting.

Effect of the number of Environments. Figure 5 shows the
impact of the number of environments on the model’s performance.
We can see that as the number of environments increases, the per-
formance of CausalDiffRec improves across the three datasets. This

Chu Zhao et al.

indicates that more environments help enhance the model’s general-
ization on OOD (Out-of-Distribution) data. However, as the number
of environments further increases, performance declines, which we
believe is due to the model overfitting to too many environments.

5 RELATED WORK
5.1 GNN-based Recommendation

Recent developments in graph-based recommender systems have
leveraged graph neural networks to model user-item interactions
as a bipartite graph, enhancing recommendation accuracy through
complex interaction capture [9, 35, 42]. Notably, LightGCN focuses
on neighborhood aggregation without additional transformations,
while other approaches employ attention mechanisms to priori-
tize influential interactions [3, 6, 25, 29, 36, 37]. Further research
explores non-Euclidean spaces like hyperbolic space to better rep-
resent user-item relationships [27, 55]. Knowledge graphs also en-
hance these systems by integrating rich semantic and relational
data directly into the recommendation process [2, 34]. Despite
these advancements, graph-based systems often struggle with out-
of-distribution data due to the IID assumption and are challenged
by multiple distribution shifts [15, 19, 40, 45, 49]. Additionally, con-
trastive learning methods in these systems rely on a fixed paradigm
that lacks robust theoretical support, limiting adaptability to varied
data shifts. However, the aforementioned models are trained on
datasets where the training and test data distributions are drawn
from the same distribution, leading to generalization failure when
facing OOD data.

5.2 Diffusion based Recoomendation

The integration of diffusion processes into recommender systems
leverages diffusion mechanisms to model dynamic propagation
of user preferences and item information through interaction net-
works, enhancing recommendation accuracy and timeliness [16, 21,
22, 24, 26, 33, 44]. These models capture evolving user behaviors
and have shown potential in various recommendation contexts,
from sequential recommendations to location-based services. For
instance, DiffRec [33] applies diffusion directly for recommenda-
tions, while Diff-POI [26] models location preferences. Furthermore,
approaches like DiffKG [16] and RecDiff [22] utilize diffusion for
denoising entity representations in knowledge graphs and user data
in social recommendations, respectively, enhancing the robustness
and reliability of the systems. These studies underscore diffusion’s
suitability for advanced representation learning in recommender
systems. However, these methods cannot solve the OOD problem.

5.3 Out-of-Distribution Recommendation

Researchers have focused on recommendation algorithms for out-
of-distribution (OOD) data. COR [31] infers latent environmental
factors in OOD data. CausPref [11] learns invariant user prefer-
ences and causal structures using anti-preference negative sampling.
CaseQ [46] employs backdoor adjustment and variational inference
for sequential recommendations. InvPref [39] separates invariant
and variant preferences by identifying heterogeneous environments.
However, these methods don’t directly apply to graph-based rec-
ommendation models and fail to address OOD in graph structures.
AdaDrop [52] uses adversarial learning and graph neural networks
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to enhance performance by decoupling user preferences. DRO [28]
integrates Distributionally Robust Optimization into Graph Neural
Networks to handle distribution shifts in graph-based recommender
systems. Distinct from these GNN-based methods, this paper ex-
plores how to use the theory of invariant learning to design GNN-
based methods with good generalization capabilities.

6 CONCLUSION

This paper introduces CausalDiffRec, an innovative GNN-based
model designed for OOD recommendation. CausalDiffRec aims
to learn environment-invariant graph representations to improve
model generalization on OOD data. It utilizes the backdoor criterion
from causal inference and variational inference to mitigate environ-
mental confounders, alongside a diffusion-based sampling strategy.
Rooted in invariant learning theory, we theoretically demonstrate
that optimizing CausalDiffRec’s objective function enhances its
ability to identify invariant graph representations, boosting gen-
eralization on OOD data. Experiments on four real-world datasets
show CausalDiffRec surpasses baseline models, with ablation stud-
ies confirming its effectiveness.
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A THEORETICAL PROOF

CausalDiffRec aims to learn the optimal generator F*(-) as stated
in the assumption in section 2.3, thereby obtaining invariant graph
representations to achieve OOD generalization in recommenda-
tion performance under data distribution shifts. Before starting
the theoretical derivation, let’s do some preliminary work. For the
convenience of theoretical proof, we rewrite Eq. (22) as:

argming (Liask + Linfer): (23)

where Ltask = Lrec +~£generat0r +~£VGAE+-£Invsample and Linfer =
Lenvin, and for the derivation convenience, we temporarily ignore
the penalty coefficient. The Ly,q and Ljuf, can be further ab-
stracted as:

Liask = arg mingEe.p,, (E),(G,,yu)~P(Y.G|E=e)
[(fo(Gus 0),yu)]

Linfer = Mg (|2, 400) VA Ee~D,, (E).(Guyu) ~P(Y.G|E=e)

[1(fo(Gus 0), yu)|do(Gu) 1}

(24)

We follow the proof technique from [51] and show the optimality
of the Eq. (23) with the following two propositions that can achieve
OOD recommendation.
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ProposITION A.1. Minimizing Eq. (23) promotes the model’s ad-
herence to the Invariance Property and the Sufficient Condition out-
lined in Assumption (in Sec. 2.3).

ProPosITION A.2. Optimizing Eq. (23) corresponds to minimizing
the upper bound of the OOD generalization error described in Eq. (6).

Proposition A.1 and Proposition A.2, respectively, avoid strong
hypotheses and ensure that the OOD generalization error bound
of the learned model is within the expected range. In fact, this
can also be explained from the perspective of the SCM model in
Figure 2. Optimizing Eq. (6) eliminates the negative impact of unsta-
ble correlations learned by the model, which are caused by latent
environments, on modeling user preferences. At the same time,
it enhances the model’s ability to learn invariant causal features
across different latent environments. Proofs for Proposition A.1 and
Proposition A.2 are shown as follows:

Before starting the proof, we directly follow previous work [4,
18, 41, 48, 51] to propose the following lemma, using information
theory to interpret the invariance property and sufficient condition
in Assumption and to assist in the proof of Proposition A.1. Using
the Mutual Information I(; ), the invariance property and sufficient
condition in Assumption can be equivalently expressed as follow
lemma:

Lemma A.3. (1) Invariance: Ve € D(E),P(Y|P;, E = e,I) =
P(Y|P}, D © UY;EIP], . I) = 0 where P[, = F*(G). (2) Suffi-

ciency: 1(Y; Pl*nv’ I) is maxmized.

For the invariance property, it is easy to get the following equa-
tion:

I(Y;E|P} D) -
=Ep: 1 [Dxr (P(Y, EIPp, DIP(Y Py, DP(EIPE,. D)

For the sufficient condition, we employ the method of contradiction
and prove it through the following two steps:

First, we prove that for Y, P, .andIsatisfying ] == arg maxp,
I(Y; Prno. 1), they also satisty that I(Y; P}, ,I) is maximized. We
leverage the method of contradiction to prove this. Assume P} #
argmaxp,, [(Y;Prno, I), and there exists PI'm) = argmaxep,
I(Y; Prny, 1), where Py, # Pr, . We can always find a mapping
function M such that PI’M =M (SDI*HU, R), where R is a random

variable. Then we have:

I(Y: P D) = 1(Y: Pl R) o
=1(Y; P}, 1)+ I(Y;RIP;, D).

Since R is a random variable and does not contain any information

about Y, we have I(Y; R|#} . I) = 0. Therefore:

I(Y; P, 1) =1(Y; P D). (27)

This leads to a contradiction.

Next, we prove thatfor Y, P/ andIsatisfying P}, == argmaxp,,,
I(Y; Prnos 1), they also satisfy that I(Y; P}, . T) is maximized. As-
sume Pl*nv # argmaxp,, 1(Y;Piny,I), and there exists PI'm; =
argmaxgp, I(Y;Prpy, I), where P; # P We have the follow-

. . 0 Inv Inv
ing inequality:

I(Y;Pf, D) <T(Y; P/ T). (28)
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From this, we can deduce that:

PI,m; =arg I%laX I(Y; Prno, D), (29)
Ino
where contradicts £}, = argmaxp;, 1(Y;Prpy, I). Since the as-
sumption leads to a contradiction, and the assumption does not hold.
Therefore, PI*M = arg maxyp, 1(Y;Prny, I) holds. This proves that
I(Y; SDI*M, I) is maximized. The lemma A.3 is complicated proven.
Proof of Proposition A.1. First, optimizing the first term Ly,
in Eq. (23) enables the model to satisfy the sufficient condition.
Analyzing the SCM in Figure 2(c), we have the fact that max;(;|6,1)
I(Y, zcqusar) is equivalent to ming;|6,1)I(Y, GlZ¢qusar), as we use
do(G) to eliminate the unstable correlations between Y and G
caused by the latent environment. We have:

I(Y, Glzcausal) = DKL (P(Y|G: E)||p(Y|anusal’ E))
= D1 (p(Y|G, E)lIp(Y|zcqusal))

(30)
= DxrL(p(Yzcausats EMlg(Yzcausar))
< Drr(p(YIG, E)|lp(Ylzequsal))-
Based on the above derivation, we have:
I(Y, Glzcqusal) < (31)

minq(ylzcausal) DKL(p(Y|G’ E)||P(Y|anusal))-
Besides, we have:

Dkr (P(Y|G1 E) ||P(Y|anusal))
=Eeen,, B)EGY)~p(G.Y]e)

log

Ezcausalwq(zcausal |G»I)

q(Y|G, e) ]
P(Y|anusal)
< Eeep,, (B)E(G.Y)~p(G.Yle)
p(YIG,e)

Ezcuusal'”q(zcausal |G.I) q(Y|zcausal)

log ] (Jensen Inequality).

(32)
Finally, we reach:

minq(lecausal) DKL (p(Y|G’ E) ||P(Y|anusal))

© arg mingEe.p,, (E),(Gu,yu)~P(Y,G|E=e) [[(f5(Gus 0), yu) .

(33)

Thus, we have demonstrated that minimizing the expectation term
(Ltask) in Eq. (23) is equivalent to minimizing the upper bound of
I(Y; G | Zcqusat)- This results in maximizing I(Y; P}, . I), thereby
helping to ensure that the model satisfies the Sufficient Condition.
Next, we prove that optimizing the first term £, in Eq. (23)
enables the model to satisfy the Invariance Property. Similar to Eq.

(30), we have:
I(Y;E = e | zcqusar)
= Drr(p(Y | zcausat- ©) | (Y | Zcausal))
= Dxr(p(Y | zcausat> E) || Beep(E) [P(Y | Zcausars €)])
= Dkr(q(Y | Zcausar) | Been(£) [9(Y | Zcqusar)])
= Drr(q(Y | zequsar) I| (Y | zcqusars €))
= Dk1.(Been(p) [P(Y | Zcausals ©)] | Eeen(E) [9(Y | 2causar)])

< Drr(q(Y | zequsat) Il EeeD(E) [q(Y | zcqusa)D-
(34)
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Besides, the last term in Eq. (34) can be further expressed as:

Dkr(q(Y | zcqusa) |l IE?'eeD(E) [q(Y | zcausa) 1)
= EEGDtr(E)E(G’Y)"’P(G’Y|5)Ezcausul"’q(zcausal|G’I)
Y|G 35
pY1G.¢) (Jensen Inequality) (35)
EeGD(E)q(Y|zcausal)

< Eeep(p) [11(fo(Gu3 0), yu) = Beep () 1(fo(Gus 0), yu)1l]

where the last term in Eq. (35) is the upper bound for the D (q(Y |
Zeausal) |l EeED(E) [q(Y | zcausar)])- Finally, we have:

minq(Y|zmusal)DKL(CI(Y | Zcausar) |l Ees’:‘D(E) [a(Y | zcausal)])
© Ming(y|z,4,000) VA {BerD,, (), (Guyu)~P(Y.G|E=e)

[[(fo(Gu: 0). yu)ldo(Gu)]}-
(36)
Hence, minimizing the variance term (£, ;s) in Eq. (23) effectively
reduces the upper bound of I(Y; E = e | z.4y541)- Thereby ensuring
the model adheres to the Invariance Property.

Proof of Proposition A.2. Optimizing Eq. (23) is tantamount to
reducing the upper bound of the OOD generalization error in Eq.
(6). Let g(Y | G) represent the inferred variational distribution of
the true distribution p(Y | G, E). The OOD generalization error can
be quantified by the KL divergence between these two distributions:

D1 (p(YIG,E)llq(Y|G))

p(YIG.E=e) (37)
q(Y|G)

Following previous work, we use information theory to assist in

the proof of Proposition A.2. We propose the lemma A.4 to rewrite
the OOD generalization, which is shown as follows:

=Eeep,, (B)E(Y.G)~p(v.G|E) 108

LEMMA A.4. The out-of-distribution generalization error is limited
by:

Dir(p(Y|G,E)llq(Y|G)) < Dxrp(YIG, E)llg(Y|zcqusar) ] (38)

where q(Y|z¢qusq1) is the inferred variational environment dis-
tribution. The proof of Lemma A.4 is shown as:

Dir(p(Y|G,E = e)llq(Yzcqusal))

log

= LeeD(E)E(Y.G)~p(G,Y|E=e) q(Y|G)

=Eeen(E)E(,6)~p(G,Y|E=¢)
p(YIG,E=¢) ]

(39)
Zcausal ~q9(Zcausal |G>I) q(lecausal)

log

< Eeen(B)E(Y,G)~p(G,Y|E=¢)
p(Y|G.e)

9(Ylzcausal)

=DkL [p(Y|G’ E)”q(Y|anusal)]’

EzcausaINq(anusal |G.I) IOg

The Lemma A.4 has been fully proven. Based on Lemma A.3 and
Proposition A.1, the Eq. (23) can be adapted as:
minq(zcausal |G.I),q(Y.zcausal)

40
Dk (p(YIG.E = o)llq(¥ zeausa)) + I(V.E = elzcausa) )
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Table 3: Detailed statistics for each dataset.

Dataset | #Users #Items #Interactions  Density
Food 7,809 6,309 216,407 44x1073
KuaiRec | 7,175 10,611 1,153,797  1.5x1073
Yelp2018 | 8,090 13,878 398,216 3.5% 1073
Douban 8,735 13,143 354,933 3.1x1073

Hence, according to Lemma A.4, we confirm that minimizing Eq.
(23) is equivalent to minimizing the upper bound of the OOD gen-
eralization error in Eq. (6), meaning that:
argming('[:tQSk + 'Einfer) And minq(zcausallG’I)’q(Y»anusal)
Dir(p(Y|G,E = e)llq(Yzcqusal))

+I(Y,E = e|zcqusar) (I(Y,E = elzequsal) is non — negative)

2 minq(zmusal|G,I),q(Y,z,;ausal) Dir(p(Y|G,E = e)||q(Yzcqusal))
2 Dk (p(Y|G, E)llq(Y|G)).

(41)
The Proposition A.2 is completely proven.
B DERIVATION
B.1 Derivation for Equation 7
Py(Y|do(G))
= Z Py(Y|do(G),E = e,1)Py(E = e|do(G))Py(I)
= Z Po(Y|G,E = e,)Py(E = e|do(G))Py(I)
‘ (42)

= Z Po(Y|G,E = e,)Py(E = e)Py(I)

= ZPg(YlG,E =e,)Py(E = e,)
e
=Ec-p,,(g)[Po(Y|G,E D],

B.2 Derivation for Equation 8

Taking the logarithm on both sides of Eq. (8) and according to
Jensen’s Inequality, we have:

logPp (Y]do(G))
=log Ec.p,, (E) [Po(YIG,E I)]

) ) _Q4(E=elGD)
- logEPg(YIG,E =e,D)Py(E=e, I)m
> ) Qy(E=¢lG.D)
1
IOg PQ(Y|G,E=€,I)P6(E=€,I)m (43)

= Z[Q¢(E = e|G,I) log Py(Y|G,E = e, I)—

Qg (E =¢e|G,)Pg(E =e,1I)
04 (E = €[G,T)

=Eg, (E=e|G,1) [10g8Pg(Y|G. E = e,1)]

= Dk1(Qy(E = e|G,I) || Po(E =e)).

log
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Figure 6: Visualization of user embedding distributions us-
ing various methods on the Douban dataset. CausalDiffRec
ensures that hot items and cold items have representations
that are nearly co-located within the same space.

LightGCN SimGCL CausalDiffRec

08 14 ° -0.09 -0.05

1.0 -0.4 0 0.01

055 —015 025 065

Figure 7: Visualization of user embedding distributions us-
ing various methods on the Yelp2018 dataset. CausalDiffRec
ensures that hot items and cold items have representations
that are nearly co-located within the same space.

C DATASET DETAIL

Processing Details. We retain only those users with at least 15
interactions on the Food dataset, at least 25 interactions on the
Yelp2018 and Douban datasets, and items with at least 50 inter-
actions on these datasets. For all three datasets, only interactions
with ratings of 4 or higher are considered positive samples. For the
KuaiRec dataset, interactions with a watch ratio of 2 or higher are
considered positive samples.

We directly follow [28] to process the dataset above to construct
three common types of out-of-distribution data:

e Popularity shift: We randomly select 20% of interactions to
form the OOD test set, ensuring a uniform distribution of item
popularity. The remaining data is split into training, validation,
and IID test sets in a ratio of 7:1:2, respectively. This type of
distribution shift is applied to the Yelp2018 and Douban datasets.

Temporal shift: We sort the dataset by timestamp in descending

order and designate the most recent 20% of each user’s interac-

tions as the OOD test set. The remaining data is split into training,
validation, and IID test sets in a ratio of 7:1:2, respectively. The
food dataset is used for this type of distribution shift.

e Exposure shift: In KuaiRec, the smaller matrix, which is fully
exposed, serves as the OOD test set. The larger matrix collected
from the online platform is split into training, validation, and IID
test sets in a ratio of 7:1:2, respectively, creating a distribution
shift.

D HYPERPARAMETER SETTINGS

We implement our CausalDiffRec in Pytorch. All experiments are
conducted on a single RTX-4090 with 24G memory. Following the
default hyperparameter search settings of the baselines, we expand
their hyperparameter search space and tune the hyperparameters.
For our CausalDiffRec, we tune the learning rates in {le — 3, 1e —
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Table 4: Model performance comparison on IID datasets.

Dataset Ablation R@10 R@20 N@10 N@20
LightGCN 0.0154 0.0174 0.0272  0.0210

AdvDrop 0.0431 0.0258 0.0469 0.0276

KuaiRec AdvInfo 0.0514 0.0298 0.0518 0.0300
DRO 0.0307 0.0226  0.0505 0.0291

CausalDiffRec | 0.0567 0.0472 0.0634 0.0707

LightGCN 0.0023  0.0022 0.0039 0.0029

AdvDrop 0.0061 0.0051 0.0063 0.0050

Yelp2018 AdvInfo 0.0052  0.0040 0.0062  0.0049
DRO 0.0069  0.0550 0.0086 0.0065

CausalDiffRec | 0.0102 0.0120 0.0182 0.0134

Algorithm 1 Training of CausalDiffRec under Multiple Environ-
ments

1: Input: The user-item interaction graph G(V, &) and node
feature matrix X; Using the w, 01, and 6, to initial environment
generator g, (+), environment Py, (+), and graph representation
learner (ie., sampling approximator) fp, (-), respectively.

2: while not converged do

32 forallu e U do

4: forallk € {1,2,...,K} do

5 Get the modified modified graphs G by Eq. (9);

6 Infer the causal environment label z..;,,5,; from Eq. (43);

7: Obtain the damage representation x% by Eq. (14);

8: // Forward process

9 Sample xi‘l by feeding z.4,sq1 and x]tC into
Jo, Zeausars X]tc);

10: // Reverse process

11: Calculate fp, (x/tc’l) via Eq. (17) ;

12: Calculate the gradients w.r.t. the loss in Eq. (27);

13: end for

14:  end for

15:  Average the gradients over |U| users and K environments;
16:  Update w, 01, and 6, via AdamW optimizer;

17: end while

18: Output: g, (-), Py, (), and fy, (+).

4,1e — 5}. The number of diffusion steps varies between 10 and
1000, and the diffusion embedding size is chosen in {8, 16, 32, 64}.
Additional hyperparameter details are available in our released
code.

E BASELINES

We compare the CusalDiffRec with the following state-of-the-art
models:

e LightGCN [9]. It is an effective collaborative filtering method
based on graph convolutional networks (GCNs) that streamline
NGCF’s message propagation scheme by eliminating non-linear
projection and activation.

o SGL [40]. It uses LightGCN as the backbone and incorporates
a series of structural augmentations to enhance representation
learning.

WWW ’25, April 28-May 2, 2025, Sydney, NSW, Australia

e SimGCL[49]. This model employs a simple contrastive learning
(CL) approach that avoids graph augmentations and introduces
uniform noise into the embedding space to generate contrastive
views.

e LigthGCL [1]. This uses LightGCN as its backbone and intro-
duces uniform noise into the embedding space for contrastive
learning without relying on graph augmentations

e CDR [32]. It captures preference shifts using a temporal varia-
tional autoencoder and learns the sparse influence from multiple
environments.

e InvPref [39]. It is a general debiasing model that iteratively de-
composes invariant and variant preferences from biased observa-
tional user behaviors by estimating heterogeneous environments
corresponding to different types of latent bias.

e InvCF [54]. This model aims to mitigate popularity shift to dis-
cover disentangled representations that faithfully reveal the la-
tent preference and popularity semantics without making any
assumption about the popularity distribution.

o AdvInfoNCE [53]. It is an InfoNCE variant that leverages a
detailed hardness-aware ranking criterion to improve the recom-
mender’s ability to generalize

e AdvDrop [52]. It is designed to alleviate general biases and inher-
ent bias amplification in graph-based collaborative filtering by
enforcing embedding-level invariance from learned bias-related
views.

e DR-GNN [28]. A GNN-based OOD recommendation algorithm
solves the data distribution shift via the Distributionally Robust
Optimization theory.

F MODEL COMPLEXITY ANALYSIS

We analyze the time complexity of our CausalDiffRec across its
different components: i) The environment generator has a time
complexity of O(k - |E|), where |E]| is the size of the edge set and
k is the number of generated environments. ii) The most time-
consuming part of the causal diffusion component is the diffusion
generation. Initially, a Variational Graph Auto-Encoder (VGAE)
maps the graph-structured data to a fixed distribution in latent
space with a complexity of O(L - |E| - d), where L is the number of
layers in the encoder part of VGAE, and d represents the hidden
layer dimensions. The overall time complexity of the diffusion
model is O(T - L - d), where T is the number of time steps. iii)
The environment inference component has a time complexity of
O(1). In summary, CausalDiffRec can achieve overall complexity
comparable to state-of-the-art diffusion-based recommendation
models such as DiffRec [33] and RecDiff [22].
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